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Abstract:  

This study presents a developing modeling approach integrating Response Surface Methodology (RSM) with the 

JWES (ANN) model to predict the maximum hardness of the Heat Affected Zone (HAZ) in Tungsten Inert Gas 

(TIG) welding. Using EH36 TMCP steel as the base material, experimental design through Central Composite 

Design (CCD) was conducted by varying welding current, voltage, and velocity. The HAZ maximum hardness 

values were predicted via JWES ANN model and compared against those derived from RSM-based regression 

equations. The model demonstrated high accuracy, with a Predicted R² of 0.9821 and Adequate Precision ratio of 

84.226. Statistical analysis confirmed the significance of key process parameters. The results validate the 

effectiveness of combining JWES ANN model predictions with RSM optimization in achieving accurate HAZ 

maximum hardness modeling. 

 

Keywords: TIG welding, HAZ hardness, JWES ANN, Response Surface Methodology, Regression model, 
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 الملخص 
 (ANN) الشبكة العصبية الاصطناعيةمع نموذج   (RSM) تقدمّ هذه الدراسة نموذجاً متطورًا في النمذجة من خلال دمج منهجية سطح الاستجابة

 في لحام التنجستن بالغاز الخامل (HAZ) بهدف التنبؤ بالصلابة القصوى لمنطقة التأثير الحراري  ، (JWES) التابع للجمعية اليابانية لهندسة اللحام

(TIG) تم استخدام فولاذ EH36 TMCP كمادة أساسية، كما تم إجراء تصميم تجريبي باستخدام التصميم المركزي المركب (CCD)  من خلال

، وتمت مقارنتها  JWES ANN باستخدام نموذج HAZ تغيير تيار اللحام، الجهد الكهربائي، وسرعة اللحام. تم التنبؤ بقيم الصلابة القصوى للـ

، ونسبة  R² = 0.9821  ديد التنبؤيأظهر النموذج دقة عالية، حيث بلغ معامل التح .RSM بالنتائج المستخلصة من معادلات الانحدار المستندة إلى 

 JWES ANN . وأكد التحليل الإحصائي أهمية المتغيرات العملية الأساسية. وتثبت النتائج فعالية الدمج بين تنبؤات نموذج84.226الدقة الملائمة  

 .في تحقيق نمذجة دقيقة للصلابة القصوى لمنطقة التأثير الحراري RSM وتحسينات

 . ، منهجية سطح الاستجابة، نموذج انحدارJWES ANN، نموذج HAZ، صلابة  TIGلحام  الكلمات المفتاحية:

Introduction 

Welding is a method of joining two similar or dissimilar metals, with or without the use of filler material.  One of 

the well-known conventional Arc welding processes is Tungsten Inert Gas welding, commonly referred to as TIG 

welding. This method is used due to its powerful and controllable features, which enable it to transmit heat to the 

welding line locally. The TIG fusion zone size is narrower compared to other single-pass arc welding processes 

(Sattarpanah Karganroudi et al., 2021). In the TIG arc welding process, a non-consumable tungsten electrode is 

used to create an arc on the workpiece. This welding method was applied to the metals using an inert gas as the 

shielding gas for the weld pool. Experiences have demonstrated that the TIG welding method is a reliable welding 

process, producing high-quality welds. Spatters and fumes are rarely encountered during this process. The low 

https://easrjournals.com/index.php/AJAPST/index
mailto:salehsalahsaleh101@gmail.com


64 | African Journal of Academic Publishing in Science and Technology (AJAPST)   

  

productivity of this method restricts it to limited industries. One of the current methods for increasing productivity 

in the TIG welding process involves increasing current and scanning speed. However, under high-current TIG 

welding, due to a significantly increased heat input on the base material (BM), some defects, such as 

discontinuities and undercuts, can form (Sattarpanah Karganroudi et al., 2021).  The manufacturing industry is 

growing rapidly to create components or engineering systems that impart the desired combination of properties to 

materials, enabling them to perform their intended function within their expected working life. The manufacturing 

process involves turning raw materials into finished materials products (i.e., goods) that are intended for use in 

some useful purpose. The key manufacturing processes include metal forming, metal cutting, and metal joining, 

among others. These manufacturing processes are applied to raw materials to create a variety of parts. However, 

the selection of a manufacturing technique depends on the complexity of the component's geometry, the number 

of parts to be made, the properties of the materials, the accuracy required, etc. (CHANDRA MOI, 2019). Within 

the last few decades, the focus has been on creating complex shape parts by joining welding materials that can 

withstand ever-increasing stress, temperatures, and impact strength, among other factors. Welding is a well-

recognized technique worldwide today as a remarkably versatile means of metal fabrication and material repair, 

joining similar or dissimilar materials permanently with or without the application of heat, pressure, and filler 

material, ranging from simple constructions to complex systems with high safety requirements. The welding 

process is efficient, economical, and dependable as a means of joining metals (CHANDRA MOI, 2019.  This 

study aims to develop an accurate predictive model for estimating the HAZ maximum hardness in TIG welding 

using a hybrid approach that integrates the JWES ANN model with Response Surface Methodology (RSM). By 

analyzing the effects of welding current, voltage, and velocity, the study aims to identify significant process 

parameters and enhance the quality and reliability of welded joints through data-driven modeling. This aim can 

be achieved by performing the following objectives: 

1. Develop a statistical model and find the significant effect of the welding input process parameters on 

HAZ Maximum Hardness Hv-5 by applying the Response Surface Methodology (RSM) via Minitab 

software and Design Expert software.  

2. Validation of the model based on neural network analysis available through the JWES ANN model by 

calculating the coefficient of determination (R-squared), comparing actual values with predicted values. 

Literature Review  

In the (Sampath & Varadarajan, 2023) presented the balanced Ti (and/or Zr), B, Al, N, O content can be 

ascertained using an artificial neural network (ANN) model offered by the Japan Welding Engineering Society 

(JWES) at its website. The JWES ANN model allows one to manipulate 16 elements of the WM compositions, 

each within a specified range and seek a lower predictive temperature range for achieving28 J absorbed energy 

(T28J/C) during CVN impact testing.  (Tahara et al., 2013) summarized the contents of JWES WES7700 along 

with a verification of repair welding procedures, such as minimum required grind out thickness for thermal 

removal of flaws, minimum required throat thickness of fillet welds for patched plates by experimental pressure 

tests and FEM analysis and some comparison. (Oyinbade, 2023) Presented defects in welding can compromise 

the quality and strength of weld joints, creating challenges for fabricators in achieving optimal joint strength and 

quality in a weld structure. A fuzzy logic-based therapy was designed to predict tensile strength in welding. A 

total of 30 fusion experiments were conducted, and the resulting tensile strength was recorded. The crisp variables 

were transformed into fuzzy sets. The fuzzy logic tool was discovered to be most effective in predicting the tensile 

strength of TIG-welded mild steel, with an R2 value of 0.99. (Sampath, 2024) performed a study of consumable 

electrodes for fusion welding of HSSs used in the fabrication of demand-critical applications such as structures in 

earthquake-prone locations, aircraft carriers, submarines and pressure vessels can immensely benefit from the 

above understanding of the relationships among actual chemical composition, austenite-to-ferrite TS temperature 

and cooling rate to form predominantly AF in WM microstructures with exceptional combination of higher 

strength and superior impact toughness. (Afabor, 2025) A study was conducted to compare Taguchi, fuzzy logic, 

and response surface methodology (RSM) techniques for optimizing tungsten inert gas (TIG) welding 

parameters—specifically current, voltage, and gas flow rate—when applied to mild steel. Utilizing MATLAB for 

fuzzy logic modelling, Minitab for ANOVA and primary effect analysis, and Design Expert for charting and 

graphical interpretations, the study demonstrated that all three methods exhibit effectiveness. However, fuzzy 

logic emerged as the most robust optimization tool, achieving a lower error range (1.8–5.4%) compared to RSM 

(0.72–12.3%) and Taguchi (0.79–33.54%). The findings suggest that fuzzy logic produced results that more 

closely approximated actual experimental outcomes, thereby offering a superior predictive capability relative to 

traditional optimization techniques. (Al-Fazani & M. Elmabrok, 2025) implemented simulation process, the 

maximum hardness of HAZ, Hv-5, and the weld metal tensile strength of the weld were investigated by finding 

predicted and optimum values for each model. The implemented validation for each model was done using the 

mean absolute percentage error MAPE and Nash Sutcliffe efficiency (NSE), respectively. It was observed that the 
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ANN technique gave a mean absolute percentage error MAPE low, and Nash Sutcliffe efficiency (NSE) high, 

indicating that each model is accurate and excellent. The ANN technique is an accurate prediction model of the 

HAZ maximum hardness Hv-5, and weld metal tensile strength of the weld. Therefore, they are recommended for 

predicting the weld of the arc welding process. Although significant advancements have been made in modeling 

various aspects of the TIG welding process such as temperature distribution, weld bead geometry, tensile strength, 

and metallurgical characteristics, limited research has specifically focused on the prediction of Heat Affected 

Zone (HAZ) maximum hardness (Hv-5). Existing studies primarily emphasize mechanical and thermal parameters 

without establishing direct predictive models for HAZ hardness, especially through hybrid computational 

methods.  These approaches often lack integration with robust statistical techniques such as Response Surface 

Methodology (RSM) for optimization and parameter significance analysis. Consequently, a comprehensive hybrid 

model that combines the predictive capability of ANN (specifically the JWES ANN model) with the statistical 

rigor of RSM for HAZ hardness prediction remains underexplored.  JWES was chosen because it is specifically 

designed for welding process modeling and is accredited by the Japanese Welding Society. The program is capable 

of modeling the chemical composition of the welded metal and analyzing its effects on the mechanical properties 

of the welded metal using algorithms supported by advanced artificial neural networks. Compared to other 

programs, such as Simufact and Abaqus, it offers accurate physical analyses; however, these require more 

comprehensive materials engineering and modeling, which are beyond the scope of this study. 

Material Selection and Process Settings  

In (Shin et al., 2015), prepared the base material used in this study is EH36 TMCP steel plate with 20 mm 

thickness, which is equivalent to ASTM A131 steel.  The TMPC steel is widely used in ship buildings and is 

guaranteed for use in cold environments. Table 1 and Table 2 shows the chemical composition and the mechanical 

properties of the base metal based on the mill test certificate. Bevel butt joint configuration with the root gap of 6 

mm, as shown in Figure 1, has been prepared for joining the plates in order to secure the notch position at the 

weld metal and the HAZ in the impact test specimen. 

Table 1 Chemical composition of EH36 (Shin et al., 2015) 

Base metal Mn Si C P S 

EH36 1.5 0.32 0.08 0.008 0.003 

 

Table 2 Mechanical properties of EH36 (Shin et al., 2015) 

Base metal 
Ultimate strength  

(MPa) 

Yield stress  

(MPa) 

Elongation 

(%)  

Charpy impact energy  

(J) 

EH36 572 500 22 429 

 

 

 

 

 

 

 

Figure 1: Joint Configuration and Weld Specimen Size (Shin et al., 2015) 

The key input process parameters considered in the study include welding current, welding voltage and welding 

speed selected depends on (Shin et al., 2015), while the response variable is HAZ Maximum Hardness estimated 

in welding process the selected depended on research gap.  The three input process parameters specified in Table 

3 with their upper (+1) and lower (-1) levels as well as an appropriate design matrix had all been investigated 

(Shin et al., 2015).  The output variable is specified in Table 4. 
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Table 3  Input process parameters and their levels (Uwoghiren & Erhunmwunse, 2022) 

No. 

S. 

Input process parameters  Notation Unit 

 Level  

-1 0 +1 

1 welding current C (A) 100 140 180 

2 welding voltage V (V) 16 19 22 

3 welding speed S (cm/min) 10 35 60 

 

Table 4 The response selected for these experiments 

No. 

S. 
Response Notation 

1 HAZ Maximum Hardness  Hv-5 

Simulation and Prediction Models Approaches 

In this study, the simulation approach by means of utilizing simulation software will be implemented to represent 

the estimate the HAZ Maximum Hardness estimated in welding process. Moreover, the statistical approach 

namely RSM, technique will be utilized to develop the accurate model.  The JEWS website provides the required 

template to perform these predictive calculations based on the chemical composition with certain minimum and 

maximum limits for specific elements. The Japan Welding Engineering Society (JWES ANN Model) is a 

prominent professional organization dedicated to advancing the field of welding in Japan. Founded to foster 

progress in welding engineering and its applications, the JWES plays a pivotal role in connecting academicians, 

engineers, and researchers in the welding community. Additionally, JWES actively contributes to the 

establishment of quality standards in the welding industry, thereby ensuring the high quality of Japanese 

manufactured products. Through international collaborations, JWES enhances the global standing of Japan's 

welding industry (Sampath, 2023).  Figure 2 illustrates the interface of JWES ANN model. 

 

 

Figure 2: The interface for JWES ANN model 

Response Surface Methodology Approach 

The design of experiment (DOE) method is a statistical method for studying a process with a limited number of 

tests.  Response surface methodology (RSM) is a common and powerful regression-based modeling approach that 
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uses a mathematical model to determine the relationship between multiple complicated factors and process 

responses It also has significant uses in the development, formulation, and design of new items as well as in the 

improvement of designs for already-existing ones (MYERS, 2016). Using the range and levels of the independent 

variables presented in Table 5, statistical design of experiment (DOE) using central composite design (CCD) 

method was done. The total number of experimental runs that can be generated using the CCD method. 

Table 5. Experimental Result using CCD.  

Run Current (A) Voltage (V) Velocity (cm/min) 

1 100 16 10 

2 180 16 10 

3 100 16 60 

4 180 16 60 

5 100 22 10 

6 180 22 10 

7 100 22 60 

8 180 22 60 

9 100 19 35 

10 180 19 35 

11 140 19 10 

12 140 19 60 

13 140 16 35 

14 140 22 35 

15 140 19 35 

Results and Discussion  

The effects of the three input process parameters current, voltage, and velocity and their effects on the response 

HAZ maximum hardness is analyzed and studied using the experimental values. The JWES ANN model is 

implemented to calculate the HAZ maximum hardness for each run. The values of the HAZ maximum hardness 

are also presented in Table 6.   

Table 6. Results of The Calculated HAZ maximum hardness as Actual Values by ANN model. 

Run 

Factors Response 

Current (A) Voltage (V) Velocity (cm/min) 
HAZ Maximum Hardness  

(Hv-5) 

1 100 16 10 295.1 

2 180 16 10 258.7 

3 100 16 60 360.1 

4 180 16 60 348 

5 100 22 10 274.7 
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Run 

Factors Response 

Current (A) Voltage (V) Velocity (cm/min) 
HAZ Maximum Hardness  

(Hv-5) 

6 180 22 10 240.6 

7 100 22 60 354.2 

8 180 22 60 338.5 

9 100 19 35 343.9 

10 180 19 35 323 

11 140 19 10 263.8 

12 140 19 60 349.7 

13 140 16 35 339 

14 140 22 35 327.4 

15 140 19 35 333.2 

 

The analysis of variance in Table 7 presents a Model F-value of 796.31, indicating that the model is statistically 

significant.  There is only a 0.01% chance that an F-value this large could occur due to noise. "Values of "Prob > 

F" less than 0.0500 indicate model terms are significant. In this case, A, B, C, AC, BC, C^2 are significant model 

terms.  Values greater than 0.1000 indicate the model terms are not significant.  If there are many insignificant 

model terms (excluding those required to support the hierarchy), model reduction may improve your model.  

Table 7 Analysis of variance for the HAZ maximum hardness. 

Source Sum of Squares df Mean Square F-Value 

p-value 

Prob > F 

 

Model 21670.57 10 2167.06 796.31 < 0.0001 significant 

A-A 29.53 1 29.53 10.85 0.0301  

B-B 42.83 1 42.83 15.74 0.0166  

C-C 916.29 1 916.29 336.70 < 0.0001  

AB 0.21 1 0.21 0.078 0.7944  

AC 227.91 1 227.91 83.75 0.0008  

BC 24.70 1 24.70 9.08 0.0394  

A^2 2.69 1 2.69 0.99 0.3766  

B^2 1.53 1 1.53 0.56 0.4946  

C^2 1695.47 1 1695.47 623.02 < 0.0001  

ABC 4.35 1 4.35 1.60 0.2747  
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Source Sum of Squares df Mean Square F-Value 

p-value 

Prob > F 

 

Residual 10.89 4 2.72    

Cor Total 21681.46 14     

 

Table 8 shows the estimated regression coefficient for HAZ maximum hardness, representing the p-values 

determining whether the effects are significant or insignificant. The "Pred R-Squared" of 0.9821 is in reasonable 

agreement with the "Adj R-Squared" of 0.9982; i.e., the difference is less than 0.2.  Adeq Precision" measures the 

signal-to-noise ratio.  A ratio greater than 4 is desirable.  Your ratio of 84.226 indicates an adequate signal.  This 

model can be used to navigate the design space. 

Table 8 Analysis of variance for the HAZ maximum hardness. 

Factor 
Coefficient 

Estimate 
df 

Standard 

Error 

95% CI 

Low 

95% CI 

High 

VIF 

Intercept 368.77 1 6.33 351.20 386.34  

A-A -59.61 1 18.10 -109.85 -9.37 98.22 

B-B -6.14 1 1.55 -10.44 -1.84 8.81 

C-C 28.42 1 1.55 24.12 32.72 8.81 

AB -0.57 1 2.04 -6.24 5.10 8.81 

AC 18.68 1 2.04 13.01 24.35 8.81 

BC 4.73 1 1.57 0.37 9.09 7.25 

A^2 12.52 1 12.60 -22.47 47.51 98.52 

B^2 0.77 1 1.03 -2.08 3.63 1.30 

C^2 -25.68 1 1.03 -28.53 -22.82 1.30 

ABC -2.58 1 2.04 -8.25 3.09 7.25 

 Std. Dev. 1.65  R-Squared 0.9995  

 Mean 316.66  Adj R-Squared 0.9982  

 C.V. % 0.52  Pred R-Squared 0.9821  

 PRESS 387.51  Adeq Precision 84.226  

 

Equation 1, in terms of coded factors, can be used to make predictions about the response for given levels of each 

factor.  By default, the high levels of the factors are coded as +1, and the low levels of the factors are coded as -1 

The coded equation is useful for identifying the relative impact of the factors by comparing the factor coefficients. 

HAZ maximum hardness=368.77 -59.6* A -6.14* B + 28.4 * C - 0.5* AB +18.68* AC +4.73 * BC +12.52 * 

A^2+ 0.77 * B^2 -25.67 * C^2 -2.58 * ABC                                                                                        (1) 



70 | African Journal of Academic Publishing in Science and Technology (AJAPST)   

  

Where 

A: current, B: voltage, and c: velocity.  

The goal is to predict a response that is impacted by a number of factors through an accurate experiment design 

in Table 9. The response data was considered as the actual values using the JWES ANN model.  Subsequently, 

the data were inputted into Minitab software. Then, the predicted values, using the devolved mathematical model, 

of the HAZ maximum hardness were also given in Table 9. 

Table 9 The actual and the predicted values of the HAZ maximum hardness using JWES ANN model and 

RSM, respectively. 

Run 

Factors Response 

Current 

(A) 

Voltage 

(V) 

Velocity 

(cm/min) 

HAZ Maximum Hardness  

(Hv-5) by the JWES ANN model 

HAZ Maximum Hardness  

(Hv-5) by predicted RSM 

1 100 16 10 295.1 293.47 

2 180 16 10 258.7 259.28 

3 100 16 60 360.1 360.54 

4 180 16 60 348 347.70 

5 100 22 10 274.7 274.92 

6 180 22 10 240.6 240.08 

7 100 22 60 354.2 353.54 

8 180 22 60 338.5 340.05 

9 100 19 35 343.9 345.52 

10 180 19 35 323 321.68 

11 140 19 10 263.8 265.14 

12 140 19 60 349.7 348.66 

13 140 16 35 339 339.90 

14 140 22 35 327.4 326.80 

15 140 19 35 333.2 332.58 

 

Figure 3 shows the actual versus the predicted values of the which indicates the accuracy of the model based 

visual comparison.  
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Figure 3: The Actual Versus the Predicted Values for HAZ maximum hardness. 

The model graphs, which illustrate the interactions between the combined variables and the measured responses, 

were evaluated using a counterplot, as shown in Figures 4, 5, and 6, respectively.  Figure 4 shows that the variation 

in current and voltage significantly affects the maximum hardness of the HAZ as the current and voltage decrease. 

The HAZ maximum hardness is high, reaching a point where further reduction in velocity and current indicates a 

decrease, as shown in Figure 5. Figure 6 shows that the voltage decreases and the velocity increases to the 

maximum hardness of the HAZ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Effect of Current and Voltage on the HAZ maximum hardness. 
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Figure 5: Effect of Current and velocity on the HAZ maximum hardness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Effect of voltage and velocity on the HAZ maximum hardness.  

Conclusion 

This study successfully developed a predictive model combining Response Surface Methodology (RSM) with the 

JWES ANN model to estimate the maximum hardness of the Heat Affected Zone (HAZ) in TIG welding. Using 

EH36 TMCP steel as the base material and applying a Central Composite Design (CCD) experimental setup, the 

research examined the effects of welding current, voltage, and velocity. The analysis revealed that welding speed 

was the most influential parameter affecting HAZ hardness, followed by interaction effects between current and 

voltage.  The developed models showed a high level of accuracy, with a predicted R² of 0.9821 and an Adequate 

Precision ratio of 84.226, indicating strong predictive capability and statistical reliability. The integration of ANN 
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and RSM proved to be highly effective, offering a robust framework for understanding and optimizing welding 

parameters to control the mechanical properties of the welded joint.  Moreover, the results demonstrate the 

practical value of combining machine learning techniques with statistical analysis in engineering applications. 

The model provides a reliable tool for engineers to optimize welding conditions, improve material performance, 

and reduce experimental costs by accurately predicting outcomes before physical trials. Therefore, the hybrid 

modeling approach proposed in this study is recommended for broader industrial adoption, particularly in 

applications where precision and weld quality are critical. 

Recommendation and Future Study 

Based on the findings of this study, it is recommended that the developed hybrid model combining RSM and the 

JWES ANN be utilized in industrial applications to optimize TIG welding parameters, particularly for controlling 

HAZ maximum hardness. The model’s high predictive accuracy supports its use in minimizing experimental costs 

and improving weld quality. For future research, it is suggested to extend the model’s application to other 

materials, incorporate additional mechanical properties in multi-objective optimization, and integrate real-time 

process data to enhance prediction capabilities. Further microstructural analysis is also encouraged to deepen the 

understanding of hardness variations within the HAZ. 
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